Journal of Labelled Compounds and Radiopharmaceuticals *J Label Compd Radiopharm* 2007; **50**: 513–514. Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/jlcr.1231

Short Research Article

Synthesis of (¹⁴C)*tert*-butyl acetylene[†]

KARLA G. CUEVAS-LICEA*, NATHAN X. YU, STEVEN J. STASKIEWICZ and CONRAD E. RAAB

Department of Drug Metabolism, Merck Research Laboratories, P.O. Box 2000, Rahway, NJ 07065, USA

Received 23 June 2006; Revised 13 December 2006; Accepted 14 December 2006

Keywords: CYP P-450; tert-butyl acetylene; Weinreb ketone synthesis

Introduction

The cytochromes P-450 (CYP) constitute a superfamily of heme-containing enzymes that are involved in the metabolism of a wide variety of endogenous and exogenous compounds.¹ Drug interactions involving P-450 are common, and generally result from either enzyme inhibition or induction. Understanding CYP enzyme interactions might allow prescribers the ability to better anticipate and manage each patient's response to a drug regimen.²

Recently, evidence has been found that *tert*-butyl acetylene (tBA) can act as mechanism-based inactivator of cytochrome P-450 enzymes.³ We were therefore interested in conducting the synthesis of labeled tBA to perform enzyme inhibition studies and amino acid residue identification on the active site. The synthesis of $[^{14}C]$ tBA has not been previously reported.

Results and discussion

Several possible syntheses have been published for tBA.⁴ To date, the most efficient way of preparing tBA is by the method from Bartlett and Rosen.⁵ We therefore decided to prepare [¹⁴C]pinacolone by Weinreb ketone synthesis and then apply the method of Bartlett and Rosen for formation of [¹⁴C]tBA.

Synthesis of the pivalamide **3** was easily accomplished by applying a previously published procedure by Tillyer⁶ using Schotten-Baumann conditions. The [¹⁴C]methyl Grignard was prepared using standard vacuum-transfer procedures. The formation of [¹⁴C]-pinacolone **4** was accomplished in 28% yield, with 82% radiochemical purity.

The next step was initially carried out unsuccessfully using modified Negishi conditions.⁷ The chlorination/ dehydrochlorination step was therefore based on work

Figure 1 Synthesis of [¹⁴C]tBA.

^{*}Correspondence to: Karla G. Cuevas-Licea, Department of Drug Metabolism, Merck Research Laboratories, P.O. Box 2000, Rahway, NJ 07065, USA. E-mail: karla_cuevas_licea@merck.com

[†]Proceedings of the Ninth International Symposium on the Synthesis and Applications of Isotopically Labelled Compounds, Edinburgh, 16–20 July 2006.

Figure 2 Radiochemical purity of [¹⁴C]tBA.

by Bartlett and Rosen⁵ and Kocienski⁸ (Figure 1). The final product was obtained by Kugelrohr distillation in 25% isolated yield and 91% radiochemical purity (Figure 2). Identity was confirmed by comparison with unlabeled tBA on HPLC and GC-FID.

Conclusion

Modification of current literature procedures and the development of a modified distillation technique have allowed us to successfully synthesize and isolate $[^{14}C]tBA$, which will be used to develop P-450 enzyme inhibition studies.

REFERENCES

1. Gonzalez FJ. Pharmacol Rev 1998; 40: 243-288.

- 2. Foye WO, Lemke TL, Williams DA. *Principles of Medicinal Chemistry*, (5th Ed). Lippincott Williams and Wilkins: Philadelphia.
- Kent UM, Roberts-Kirchoff ES, Moon N, Dunham WR, Hollenberg PF. *Biochemistry* 2001; 40: 7253–7261.
- 4. (a) Kazakov PV, Demina EI. Russ Med Bull Int Ed 2002; 51: 2134-2135; (b) Collier WL, Macomber RS. J Org Chem 1972; 38: 1367–1369; (c) Hargrove RJ, Stang PJ. J Org Chem 1973; 39: 581–582.
- Bartlett PD, Rosen LJ. J Am Chem Soc 1942; 64: 543–546.
- Tillyer R, Frey LF, Tschaen DM, Dolling UH. Synlett 1996; 3: 225–226.
- Negishi E, King AO, Klima WL. J Org Chem 1980; 45: 2526–2528.
- 8. Kocienski PJ. J Org Chem 1974; 39: 3285-3286.